Reincarnation
Now you are back,and have a task to do:
Given you a string s consist of lower-case English letters only,denote f(s) as the number of distinct sub-string of s.
And you have some query,each time you should calculate f(s[l…r]), s[l…r] means the sub-string of s start from l end at r.
Input
The first line contains integer T(1<=T<=5), denote the number of the test cases.
For each test cases,the first line contains a string s(1 <= length of s <= 2000).
Denote the length of s by n.
The second line contains an integer Q(1 <= Q <= 10000),denote the number of queries.
Then Q lines follows,each lines contains two integer l, r(1 <= l <= r <= n), denote a query.
Output
For each test cases,for each query,print the answer in one line.
Sample Input
2
bbaba
5
3 4
2 2
2 5
2 4
1 4
baaba
5
3 3
3 4
1 4
3 5
5 5
Sample Output
3
1
7
5
8
1
3
8
5
1
题意:
给出一个字符串$S$,$|S|\leq 2000$,给出$Q$组$L$和$R$,$Q\leq 10000$,求$S$的子串$S[L…R]$,有多少不同的子串。
题解:
对于$S$的所有$|S|$个后缀,即对$(S[i…|S|],i\in[1,N])$都建立一个后缀自动机。构造过程中,每添加一个字符,根据后缀连接树的性质,从i到当前字符的子串数量为$len(u)-len(link(u))$,其中$u$为添加当前字符后的末状态。这样在构造$i$到$|S|$时就可以求出区间$[i,|S|]$的所有子区间的子串数量。而枚举$i$就可以求出$[1,|S|]$的所有子区间的子串数量了。
AC代码:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
using namespace std;
const int MAXN = 2005;
int n;
char S[MAXN];
struct SAM {
int size, last;
struct Node {
int len, link;
int next[26];
void clear() {
len = link = 0;
memset(next, 0, sizeof(next));
}
} node[MAXN * 2];
void init() {
for (int i = 0; i < size; i++) {
node[i].clear();
}
node[0].link = -1;
size = 1;
last = 0;
}
void insert(char x) {
int ch = x - 'a';
int cur = size++;
node[cur].len = node[last].len + 1;
int p = last;
while (p != -1 && !node[p].next[ch]) {
node[p].next[ch] = cur;
p = node[p].link;
}
if (p == -1) {
node[cur].link = 0;
}
else {
int q = node[p].next[ch];
if (node[p].len + 1 == node[q].len) {
node[cur].link = q;
}
else {
int clone = size++;
node[clone] = node[q];
node[clone].len = node[p].len + 1;
while (p != -1 && node[p].next[ch] == q) {
node[p].next[ch] = clone;
p = node[p].link;
}
node[q].link = node[cur].link = clone;
}
}
last = cur;
}
}sam;
int Ans[MAXN][MAXN];
int main() {
int T;
scanf("%d", &T);
while (T--) {
scanf("%s", S);
n = strlen(S);
//枚举i
for (int i = 0; i < n; ++i) {
sam.init();
int&& Temp = 0;
//添加字符
for(int j=i;j<n;++j){
sam.insert(S[j]);
Temp += sam.node[sam.last].len;
//如果存在后缀连接边
if (sam.node[sam.last].link != -1) {
Temp -= sam.node[sam.node[sam.last].link].len;
}
//编号从1开始
Ans[i + 1][j + 1] = Temp;
}
}
int Q;
scanf("%d", &Q);
while (Q--) {
int Left, Right;
scanf("%d%d", &Left, &Right);
printf("%d\n", Ans[Left][Right]);
}
}
return 0;
}